Este sitio web utiliza cookies para mejorar su experiencia mientras navega. Las cookies que se clasifican según sea necesario se almacenan en su navegador, ya que son esenciales para el funcionamiento de las características básicas del sitio web. También utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador solo con su consentimiento. También tiene la opción de optar por no recibir estas cookies. Pero la exclusión voluntaria de algunas de estas cookies puede afectar su experiencia de navegación.
9788426734433

Haz clic en la imagen para ampliarla

DATOS

EAN: 9788426734433
Editorial: MARCOMBO
Páginas: 362
Número en la colección: 1
Encuadernación: Rústica
Tamaño: 170mm X 240mm
Peso: 1000 gr

ESTADISTICA PRACTICA PARA CIENCIA DE DATOS CON R Y PYTHON

En stock

Disponible en 24/48 horas

31,20 €

29,64 €

Los métodos estadísticos son una parte fundamental de la ciencia de datos, pero pocos científicos de datos tienen una formación avanzada en estadística. Los cursos y libros sobre estadística básica rara vez tratan el tema desde la perspectiva de la ciencia de datos. La segunda edición de este libro incluye ejemplos detallados de Python, ofrece una orientación práctica sobre la aplicación de los métodos estadísticos a la ciencia de datos, te indica cómo evitar su uso incorrecto y te aconseja sobre lo que es y lo que no es importante. Muchos recursos de la ciencia de datos incorporan métodos estadísticos, pero carecen de una perspectiva estadística más profunda. Si estás familiarizado con los lenguajes de programación R o Python y tienes algún conocimiento de estadística, este libro suple esas carencias de una forma práctica, accesible y clara. Con este libro aprenderás: Por qué el análisis exploratorio de datos es un paso preliminar clave en la ciencia de datos Cómo el muestreo aleatorio puede reducir el sesgo y ofrecer un conjunto de datos de mayor calidad, incluso con Big Data Cómo los principios del diseño experimental ofrecen respuestas definitivas a preguntas Cómo utilizar la regresión para estimar resultados y detectar anomalías Técnicas de clasificación esenciales para predecir a qué categorías pertenece un registro Métodos estadísticos de aprendizaje automático que 'aprenden' a partir de los datos Métodos de aprendizaje no supervisados para extraer significado de datos sin etiquetar Peter Bruce es el fundador del Institute for Statistics Education en Statistics.com. Andrew Bruce es científico investigador jefe en Amazon y tiene más de 30 años de experiencia en estadística y ciencia de datos. Peter Gedeck es científico de datos senior en Collaborative Drug Discovery, desarrolla algoritmos de aprendizaje automático para pronosticar propiedades de posibles futuros fármacos.

Productos Relacionados:

9788426732828

9788426728081

9788426735676

9788426732835

Categorías