Este sitio web utiliza cookies para mejorar su experiencia mientras navega. Las cookies que se clasifican según sea necesario se almacenan en su navegador, ya que son esenciales para el funcionamiento de las características básicas del sitio web. También utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador solo con su consentimiento. También tiene la opción de optar por no recibir estas cookies. Pero la exclusión voluntaria de algunas de estas cookies puede afectar su experiencia de navegación.
9788441549203

Haz clic en la imagen para ampliarla

DATOS

EAN: 9788441549203
Editorial: ANAYA MULTIMEDIA
Páginas: 432
Encuadernación: Rústica
Tamaño: 190mm X 230mm
Peso: 779 gr

INFERENCIA Y DESCUBRIMIENTO CAUSAL EN PYTHON

En stock

Disponible en 24/48 horas

37,95 €

36,05 €

En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.

El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.

Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, con un examen de retos y oportunidades y una exhaustiva lista de recursos para seguir aprendiendo cada vez más.

Entre otras cosas, este libro permite:

* Dominar los conceptos fundamentales de la inferencia causal.

* Liberar el potencial del proceso de inferencia causal en cuatro pasos de Python.

* Explorar avanzadas técnicas de modelado uplift o de elevación.

* Descubrir los secretos del descubrimiento causal moderno con Python.

* Utilizar la inferencia causal para producir impacto social y beneficios para la comunidad.

Productos Relacionados:

9788441550155

9788441543539

9788432904486

9788441540842

Categorías